Wosho, M.K., 2021. Text to Speech Synthesizer for Afaan Oromo Using Hidden Markov Model. United International Journal for Research & Technology (UIJRT), 2(3), pp.21-25.
Abstract
This study explores the application of natural language processing techniques with text to speech synthesis for the Afaan Oromo language using the “Hidden Markov model” on 600 news datasets that were prepared in collaboration with linguists and experts of Afaan Oromo language. Speech synthesizers are the most essential in helping impaired people, in the teaching and learning process, for telecommunications and industries. The dataset was tested on a hidden Markov model algorithm. The synthesiser has two core components: training and testing phases. In this study, the subjective Mean Opinion Score (MOS) and objective Mel Cepstral Distortion (MCD) evaluation techniques are used. The subjective results obtained using the mean opinion score (MOS) are 4.3 and 4.1 in terms of intelligibility and naturalness of the synthesised speech, respectively. The objective result obtained using the mean opinion score is 6.8 out of 8 that is encouraging.
Keywords: Hidden Markov model, Text to Speech, Afaan Oromoo.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.